Paper reading 2025.3.26

Drawing the Line: Enhancing Trustworthiness of MLLMs Through the Power of Refusal

Yuhao Wang¹, Zhiyuan Zhu¹, Heyang Liu¹, Yusheng Liao¹,

Hongcheng Liu¹, Yanfeng Wang^{1,2}, Yu Wang^{1,2⊠}

¹Cooperative Medianet Innovation Center, Shanghai Jiao Tong University

²Shanghai Artificial Intelligence Laboratory

汇报人 / dzk

Background

- Trustworthiness of MLLMs

Previous works mainly focus on multimodal alignment algs. Improve MLLMs'perceptual abillity.

-refusal can be an aspect to improve MLLMs trust worthiness.

training MLLMs to refuse

Existing approaches primarily target ambiguous queries, such as those involving non-existing objects.

-need to check intrinsic limitations and self-awareness.

- similar methods in LLMs

More complex in a multimodal scenario.

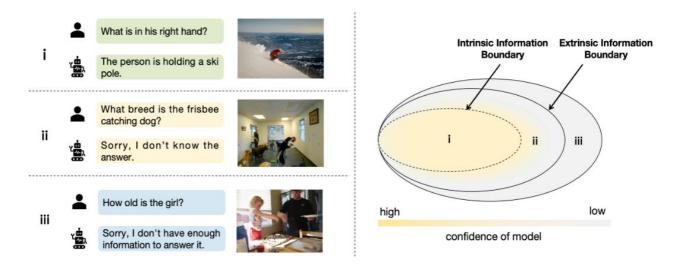
-trust worthiness depend on knowledge, vision interpretation and perceptual capabilities.

Overview

This paper proposes approaches for both training and evaluating the trustworthiness of MLLMs.

• training MLLMs to refuse.

Information Boundary-aware Learning Framework (InBoL)



Introduces a novel concept of **information boundary.** And a relative training pipeline.

Including a constructed dataset and 2 training methods

evaluating trustworthiness

A User centric method, more suitable for a multimodal scenario and cross model compare.

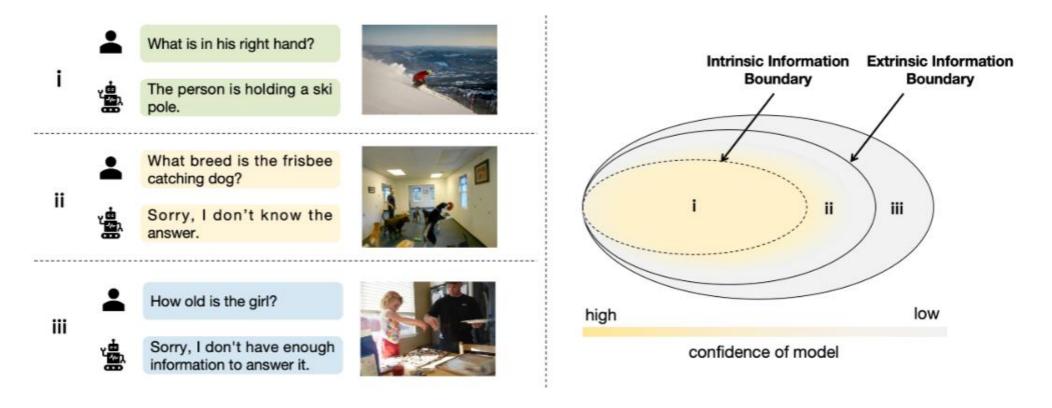
2

Information Boundary Aware Learning Framework

2.1 Information Boundary definition

2.2 Dataset construction

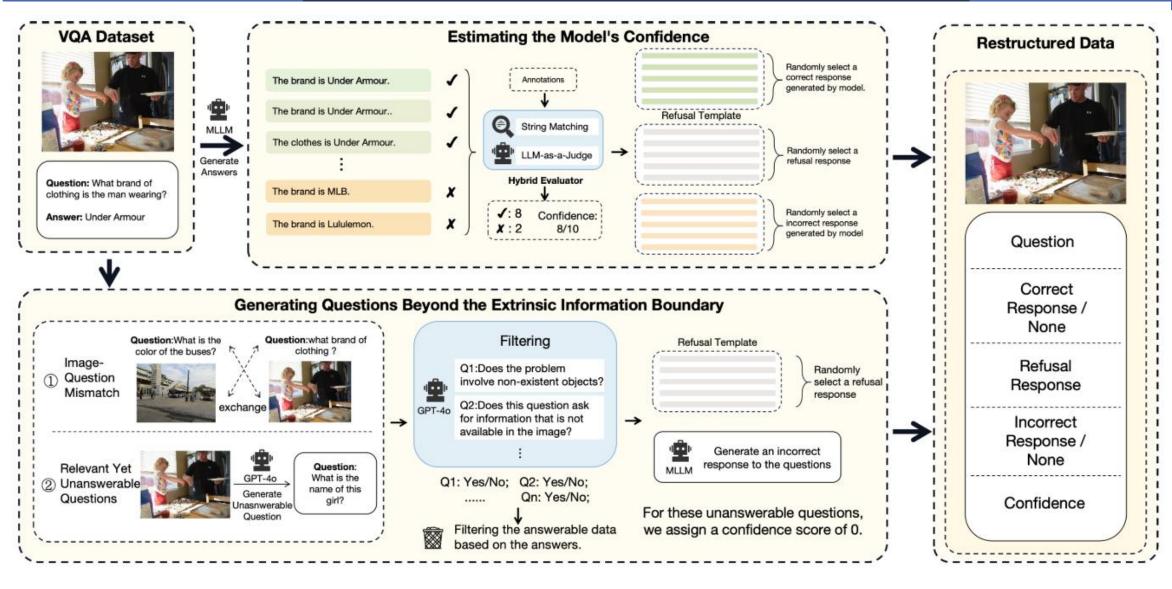
2.1 Information Boundary Definition



- out of extrinsic boundary: Image not contain necessary information for answer the question.
- out of intrinsic boundary: model cannot perceive information from Image or lacks specific knowledge.

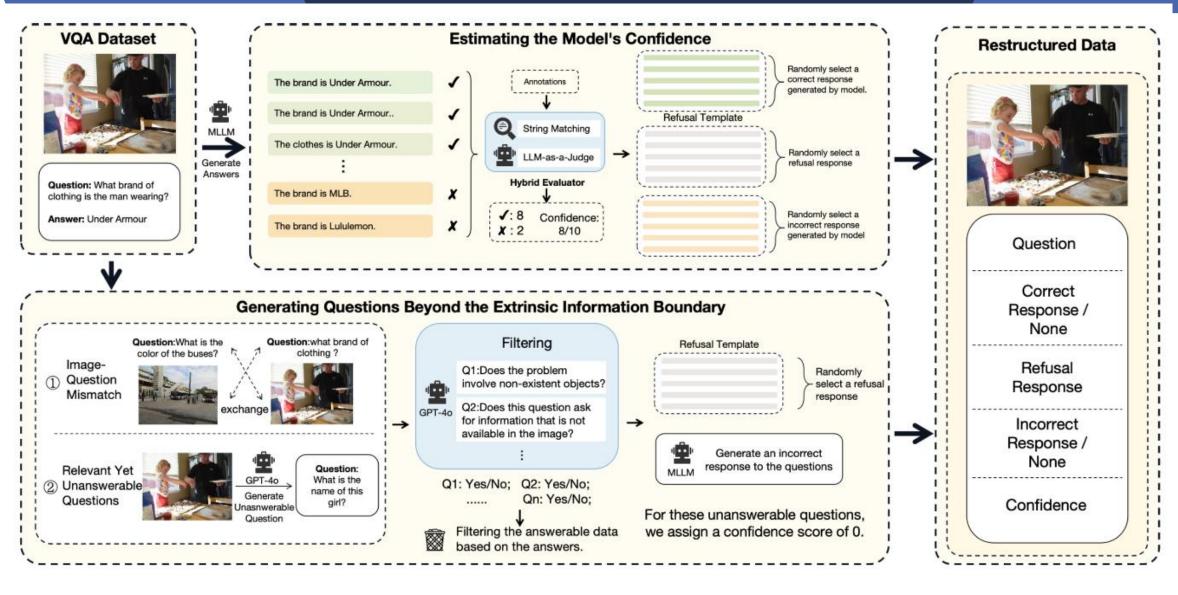
Model should refuse to answer questions in domain ii and iii.

2.2 Dataset construction



estimate the confidence for each sample to determine the model's **intrinsic information boundary**. Using an accuracy-based confidence.

2.2 Dataset construction



Construct unanswerable questions through Image Question mismatch and model generation. These are data **outside the extrinsic boundary**.

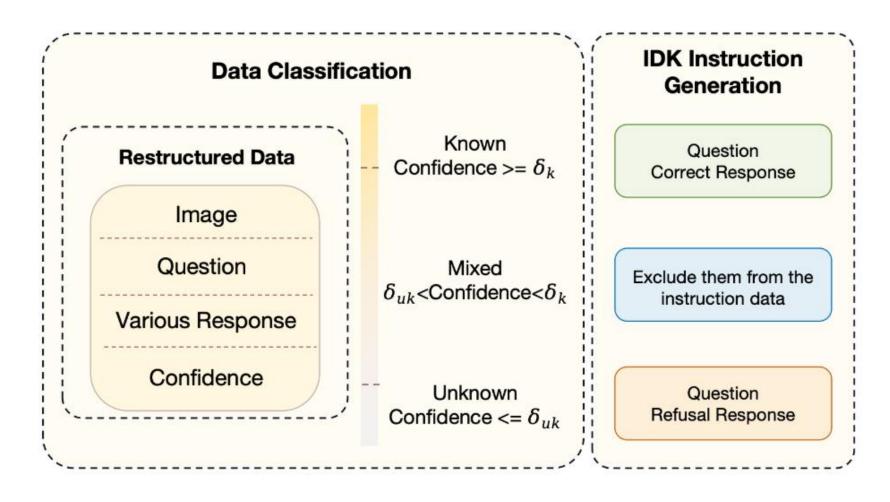
3

Two Training methods for Information Boundary Awareness

3.1 IDK Instruction tuning

3.2 Confidence-aware
Direct Preference Optimization(DPO)

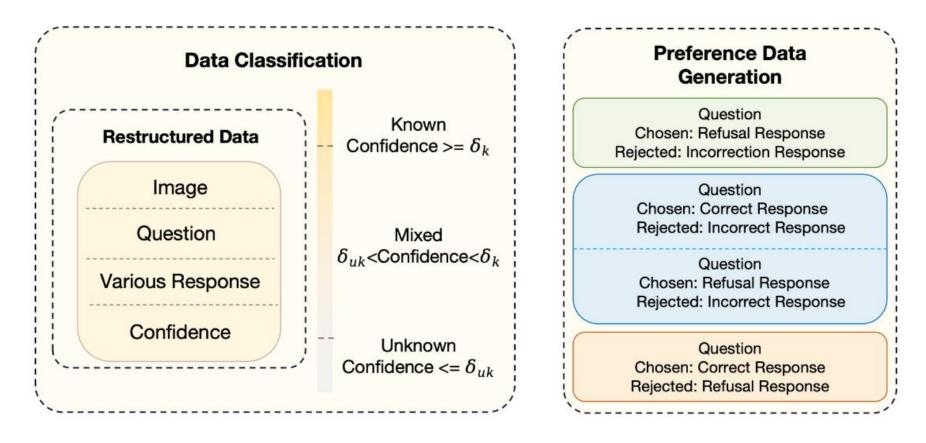
3.1.2 IDK Instruction generation



Threshold based Instruction generation.

Then instruction tune the model.

3.2.1 Confidence aware DPO



Generate preference data pairs to support DPO

- "Known" data: prefer correct answer than refusal.
- "Mixed" data: prefer correct answer than incorrect answer, prefer refusal than incorrect answer
- "Unknown" data: prefer refusal than incorrect answer.

3.2.2 Confidence aware DPO

$$\mathcal{L}_{\text{cadpo}} = -\mathbb{E}_{(x,p_1,p_2)} \Big(f(x,p_1) \cdot conf_x + f(x,p_2) \cdot (1 - conf_x) \Big)$$

Loss function of **confidence aware** DPO

For Known samples: $p_1 = p_2 = (correct > refusal)$

For Mixed samples: p_1 (correct > incorrect) p_2 (refusal > incorrect)

For Unknown samples: $p_1 = p_2 = (refusal > incorrect)$

$$f(x,p) = \log \sigma(\beta \log \frac{\pi_*(y_w|x)}{\pi_{\mathrm{ref}}(y_w|x)} - \beta \log \frac{\pi_*(y_l|x)}{\pi_{\mathrm{ref}}(y_l|x)}) \quad \text{equal to } \log \mathfrak{P}(y_l > y_w|x))$$

Advantage: both optimizing trustworthiness and output accuracy.

About DPO: Direct Preference Optimization: Your Language Model is Secretly a Reward Model

4

Results and analysis

4.1 MLLM Alignment for Trustworthiness

Alignment in LLMs: Optimizing target maximize $\sum_{q \in D_{\text{test}}} v(q, r)$.

This paper:
User centric optimizing target

maximize
$$\sum_{(i,q) \in D_{\text{test}}} v(i,q,r)$$

$$v(q,r) = \begin{cases} 1 & \text{if } q \in D_k \text{ and } r \text{ is correct.} \\ 1 & \text{if } q \in D_{uk} \text{ and } r \text{ is a refusal response} \\ 0 & \text{otherwise} \end{cases} \quad v(i,q,r) = \begin{cases} 1 & \text{if } r \text{ is a correct response,} \\ 0 & \text{if } r \text{ is a refusal response,} \\ -1 & \text{if } r \text{ is a incorrect response.} \end{cases}$$

 D_k , D_{uk} categories are based on model knowledge boundary

- It is challenging to **precisely determining** a model's knowledge boundary
- difficult to **fairly compare** the trustworthiness of different models
- In a multimodal scenario, **vision perception** should also be taken into consideration.

Model-agnostic: focus on the output.

- Do not consider inner boundary
- allowing cross-model evaluation
- can be applied to **both unimodal and** multimodal scenarios

4.1 Datasets and baselines

Datasets

Training:

General datasets:

VQA-V2

knowledge-intensive datasets:

Science QA, Oven.

OOD:

General datasets:

AOKVQA, MMBench, GQA

Knowledge-intensive datasets:

MMMU

Model: LLaVA1.5

Evaluation metrics

$$\mathrm{Acc} = rac{N_c}{N}, \quad \mathrm{RefR} = rac{N_r}{N}$$

$$s_{\text{trust}} = \sum_{(i,q) \in D_{\text{test}}} v(i,q,r) = 2 \cdot \text{Acc} + \text{RefR} - 1.$$

s_{trust} metric derived from User Centric target

Baselines

- · Refusal prompt baseline
- · SFT Baseline: make model refusing to answer questions out of extrinsic information boundary.

4.2 ID & OOD performance

ID performance

Method	Acc	RefR	S_{trust}
LLaVA1.5-7B	12.00	46.10	-6.50
+Refusal Prompt	47.00	41.70	-4.10
+SFT	81.00	49.10	8.90
+IDK-IT	92.00	38.60	16.00
+CA-DPO	87.00	49.10	28.50
LLaVA1.5-13B	20.00	51.00	4.10
+Refusal Prompt	62.00	48.20	10.80
+SFT	78.00	53.60	17.30
+IDK-IT	89.00	41.80	21.20
+CA-DPO	93.00	49.00	32.00

4.2 ID & OOD performance

OOD performance

Method	AOKVQA		GQA		MMMU			BeyondVisQA	MMBench(en-dev)				
	Acc	RefR	S_{trust}	Acc	RefR	S_{trust}	Acc	RefR	S_{trust}	RefR	Acc	RefR	S_{trust}
LLaVA1.5-7B	78.56	0.00	57.13	59.65	0.00	19.30	34.70	0.00	-30.60	25.50	62.80	0.00	25.60
+Refusal Prompt	56.77	26.20	39.74	58.65	3.43	20.74	32.22	12.89	-22.67	27.50	59.36	0.69	19.42
+SFT	74.32	3.49	52.14	59.39	2.77	21.55	34.20	1.67	-29.93	56.00	63.32	0.26	26.89
+IDK-IT	55.50	36.24	47.24	50.46	23.88	24.81	15.22	69.67	0.11	75.25	46.39	39.09	31.87
+CA-DPO	72.23	17.64	62.10	60.41	12.95	33.77	19.67	56.67	-4.00	67.75	58.42	18.13	34.97
LLaVA1.5-13B	78.95	0.00	57.90	61.81	0.00	23.63	36.22	0.00	-27.56	33.50	67.96	0.00	35.91
+Refusal Prompt	63.32	18.95	45.59	61.36	1.96	24.69	27.78	19.56	-24.89	46.00	64.69	0.26	29.64
+SFT	77.82	2.62	58.25	61.32	1.69	24.33	38.22	1.78	-21.78	68.75	67.01	0.00	34.02
+IDK-IT	63.93	23.06	50.92	52.27	19.22	23.77	14.22	74.33	2.78	79.50	55.84	23.91	35.60
+CA-DPO	73.89	15.63	63.41	59.70	13.82	33.22	25.89	41.78	-6.44	72.50	62.63	14.69	39.95

- · both IDK-IT and CA-DPO clearly **enhance the trustworthiness** of models.
- · IDK-IT significantly **increase refusal** rate, may lead to over cautious.
- · CA-DPO balance between truthfulness and helpfulness.

4.3 Awareness of extrinsic and intrinsic boundary

Extrinsic boundary awareness

	I	LaVA1.5-	7b	LLaVA1.5-13b			
	Original	IDK-IT	CA-DPO	Original	IDK-IT	CA-DPO	
Vizwiz(ua)	9.00	76.01	69.97	9.60	78.61	73.27	
VQAv2-IDK(filter)	2.80	81.42	70.63	2.60	80.14	72.40	

Refusal rate on unanswerable questions

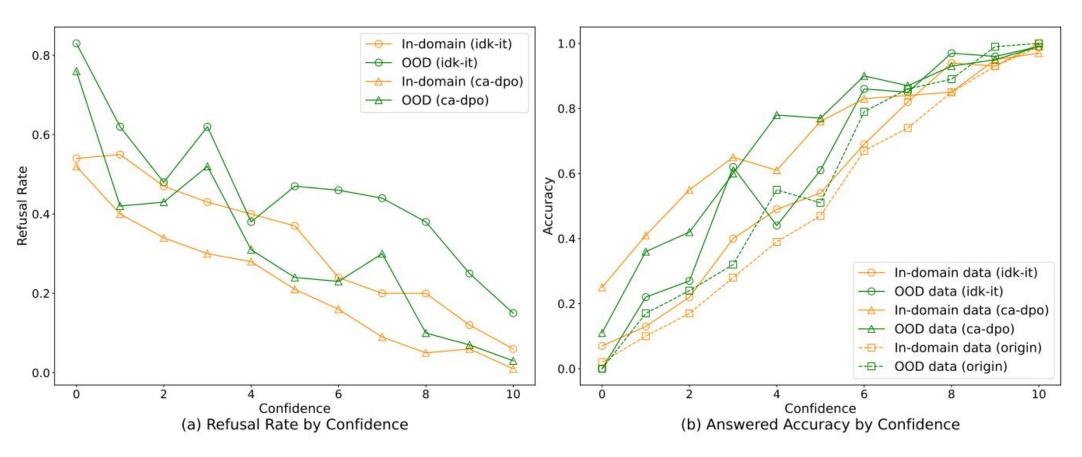
Vizwiz: dataset posed by blind people

VQAv2-IDK: Unanswerable questions filtered from VQAv2

Two training methods can significantly enhance refusal rate of unanswerable datasets. Thus makes model aware of its **extrinsic boundary**.

4.3 Awareness of extrinsic and intrinsic boundary

Intrinsic boundary awareness



· for lower-confidence questions, model demonstrates a higher likelihood of refusal. And vice versa. · IDK-IT and CA-DPO methods enhances model ability to more effectively utilize the information it possesses, leading to **improved overall accuracy**.

4.4 Effectiveness of CA DPO

Different preference on the mixed part of data.

(1).refusal>incorrect (2).correct>incorrect (3).both but w.o. confidence awareness (4).CA-DPO

Model	Method	Data	In-L	Domain(A	Avg)	Out-Of-Domain(Avg)			
	Method	Data	Acc	RefR	S_{trust}	Acc	RefR	S_{trust}	
LLaVA1.5-7B	DPO	(1)	47.50	30.20	25.20	50.30	29.46	30.06	
	DPO	(2)	51.00	26.30	28.30	55.08	18.62	28.78	
	DPO	(3)	49.50	26.30	25.30	52.88	20.35	26.11	
	CA-DPO	(3)	49.10	30.30	28.50	52.68	26.35	31.71	
LLaVA1.5-13B	DPO	(1)	47.10	36.10	30.30	52.71	24.14	29.56	
	DPO	(2)	49.60	31.40	30.60	56.37	16.45	29.20	
	DPO	(3)	48.60	33.90	31.10	55.19	20.83	31.21	
	CA-DPO	(3)	49.00	34.00	32.00	55.53	21.48	32.53	

CA-DPO achieves highest trustworthiness

Thanks

汇报人 / dzk

Appendix: About DPO

Direct Preference Optimization: Your Language Model is Secretly a Reward Model

Rafael Rafailov*†

Archit Sharma*†

Eric Mitchell*†

Stefano Ermon^{†‡}

Christopher D. Manning[†]

Chelsea Finn†

DPO optimizes for human preferences while avoiding reinforcement learning.

DPO

$$\begin{split} \max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi} \left[r(x, y) \right] &- \beta \mathbb{D}_{\mathrm{KL}} \left[\pi(y | x) \mid\mid \pi_{\mathrm{ref}}(y | x) \right] &< \text{- RL objective function} \\ &= \max_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y | x)} \left[r(x, y) - \beta \log \frac{\pi(y | x)}{\pi_{\mathrm{ref}}(y | x)} \right] \\ &= \min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y | x)} \left[\log \frac{\pi(y | x)}{\pi_{\mathrm{ref}}(y | x)} - \frac{1}{\beta} r(x, y) \right] \\ &= \min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y | x)} \left[\log \frac{\pi(y | x)}{\frac{1}{Z(x)} \pi_{\mathrm{ref}}(y | x)} \exp \left(\frac{1}{\beta} r(x, y) \right) - \log Z(x) \right] \end{split} \qquad Z(x) = \sum_{y} \pi_{\mathrm{ref}}(y | x) \exp \left(\frac{1}{\beta} r(x, y) \right) \end{split}$$

Reshape the denominator into the form of a probability distribution

$$\pi^*(y|x) = \frac{1}{Z(x)} \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta} r(x,y)\right)$$

Since Z(x) is not a function of y, $\min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \left[\mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\pi^*(y|x)} \right] - \log Z(x) \right] = \min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \left[\mathbb{D}_{KL}(\pi(y|x) \mid | \pi^*(y|x)) - \log Z(x) \right]$

The optimal solution is:
$$\pi(y|x) = \pi^*(y|x) = \frac{1}{Z(x)} \pi_{ref}(y|x) \exp\left(\frac{1}{\beta} r(x,y)\right)$$

Preference modeling

Use BT model for preference modeling: $p^*(y_1 \succ y_2 \mid x) = \frac{\exp(r^*(x, y_1))}{\exp(r^*(x, y_1)) + \exp(r^*(x, y_2))}.$

Previous slide, the optimal solution of RL is: $\pi(y|x) = \pi^*(y|x) = \frac{1}{Z(x)}\pi_{ref}(y|x) \exp\left(\frac{1}{\beta}r(x,y)\right)$

Reformulate: $r(x,y) = \beta \log \frac{\pi_{r}(y \mid x)}{\pi_{ref}(y \mid x)} + \beta \log Z(x)$.

apply this reparameterization to the ground-truth reward r* and corresponding optimal model π^*

$$r^{*}(x,y) = \beta \log \frac{\pi^{*}(y|x)}{\pi_{\text{ref}}(y|x)} + \beta \log Z(x)$$

$$p^{*}(y_{1} \succ y_{2}|x) = \frac{\exp \left(\beta \log \frac{\pi^{*}(y_{1}|x)}{\pi_{\text{ref}}(y_{1}|x)} + \beta \log Z(x)\right)}{\exp \left(\beta \log \frac{\pi^{*}(y_{1}|x)}{\pi_{\text{ref}}(y_{1}|x)} + \beta \log Z(x)\right) + \exp \left(\beta \log \frac{\pi^{*}(y_{2}|x)}{\pi_{\text{ref}}(y_{2}|x)} + \beta \log Z(x)\right)}$$

$$= \frac{1}{1 + \exp \left(\beta \log \frac{\pi^{*}(y_{2}|x)}{\pi_{\text{ref}}(y_{2}|x)} - \beta \log \frac{\pi^{*}(y_{1}|x)}{\pi_{\text{ref}}(y_{1}|x)}\right)}$$

$$= \sigma \left(\beta \log \frac{\pi^{*}(y_{1}|x)}{\pi_{\text{ref}}(y_{1}|x)} - \beta \log \frac{\pi^{*}(y_{2}|x)}{\pi_{\text{ref}}(y_{2}|x)}\right).$$

Policy objective becomes: $\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$