

Why Language Models Hallucinate

Adam Tauman Kalai* OpenAI Ofir Nachum OpenAI Santosh S. Vempala[†] Georgia Tech Edwin Zhang OpenAI

September 4, 2025

陈佳含 2025.09.16

01 Introduction

What was the title of Adam Kalai's dissertation?

GPT-40	Adam Tauman Kalai's Ph.D. dissertation (completed in 2002 at CMU) is entitled: "Boosting, Online Algorithms, and Other Topics in Machine Learning."
DeepSeek	Algebraic Methods in Interactive Machine Learning" at Harvard University in 2005.
Llama	Efficient Algorithms for Learning and Playing Games" in 2007 at MIT.

Hallucinations are an important special case of errors produced by language models.

Plausible falsehoods called hallucinations.

01 Introduction

Even if the training data were error-free, the objectives optimized during language model training would lead to errors being generated.

- Errors caused by pretraining
- Why hallucinations survive post-training

The key challenge in proving that base models(after pretraining) err is that many language models do not err.

- The degenerate model which always outputs IDK.
- Assuming error-free training data, the trivial base model which regurgitates text from a random training example.
- The optimal base model, but prohibitively large training data.

---> well-trained base models <--

FOCUS: Generating valid outputs is harder than classifying output validity.

Without prompts, a base model \hat{p} is a probability distribution over a set $X(X = E \cup V)$.

The error rate:
$$\operatorname{err} := \hat{p}(\mathcal{E}) = \Pr_{x \sim \hat{p}}[x \in \mathcal{E}].$$

IIV:

Target function:
$$f: \mathcal{X} \to \{-, +\}$$

Distribution D:

$$D(x) := \begin{cases} p(x)/2 & \text{if } x \in \mathcal{V}, \\ 1/2|\mathcal{E}| & \text{if } x \in \mathcal{E}, \end{cases} \text{ and } f(x) := \begin{cases} + & \text{if } x \in \mathcal{V}, \\ - & \text{if } x \in \mathcal{E}. \end{cases}$$

Valid examples +

Greetings.

How can I help?

There are 2 D's in LADDER. There is 1 N in PIANO.

Mia Holdner's birthday is 4/1. I don't know Zdan's birthday.

Error examples -

Greatings.

How kan eye help?

There are 3 L's in SPELL. There is 1 G in CAT.

Colin Merivale's birthday is 8/29. Jago Pere's birthday is 8/21.

IIV:

Target function:
$$f: \mathcal{X} \to \{-,+\}$$

Distribution D:

$$D(x) := \begin{cases} p(x)/2 & \text{if } x \in \mathcal{V}, \\ 1/2|\mathcal{E}| & \text{if } x \in \mathcal{E}, \end{cases} \text{ and } f(x) := \begin{cases} + & \text{if } x \in \mathcal{V}, \\ - & \text{if } x \in \mathcal{E}. \end{cases}$$

The misclassification rate:

$$\operatorname{err}_{\operatorname{iiv}} := \Pr_{x \sim D} \left[\hat{f}(x) \neq f(x) \right], \text{ where } \hat{f}(x) := \begin{cases} + & \text{if } \hat{p}(x) > 1/|\mathcal{E}|, \\ - & \text{if } \hat{p}(x) \leq 1/|\mathcal{E}|. \end{cases}$$

Corollary 1:

$$\operatorname{err} \geq 2 \cdot \operatorname{err}_{iiv} - \frac{|\mathcal{V}|}{|\mathcal{E}|} - \delta,$$

$$\delta := |\hat{p}(\mathcal{A}) - p(\mathcal{A})| \text{ for } \mathcal{A} := \{x \in \mathcal{X} \mid \hat{p}(x) > 1/|\mathcal{E}|\}$$

The standard pretraining cross-entropy objective:

$$\mathcal{L}(\hat{p}) = \underset{x \sim p}{\mathbb{E}} [-\log \hat{p}(x)].$$

Rescale the probabilities of the positively-labeled examples:

$$\hat{p}_s(x) : \propto \begin{cases} s \cdot \hat{p}(x) & \text{if } \hat{p}(x) > 1/|\mathcal{E}|, \\ \hat{p}(x) & \text{if } \hat{p}(x) \le 1/|\mathcal{E}|. \end{cases}$$

$$\delta = \left| \left| \frac{d}{ds} \mathcal{L}(\hat{p}_s) \right|_{s=1} \right|$$

The misclassification rate:

$$\operatorname{err}_{\mathrm{iiv}} := \Pr_{x \sim D} \left[\hat{f}(x) \neq f(x) \right], \text{ where } \hat{f}(x) := \begin{cases} + & \text{if } \hat{p}(x) > 1/|\mathcal{E}|, \\ - & \text{if } \hat{p}(x) \leq 1/|\mathcal{E}|. \end{cases}$$

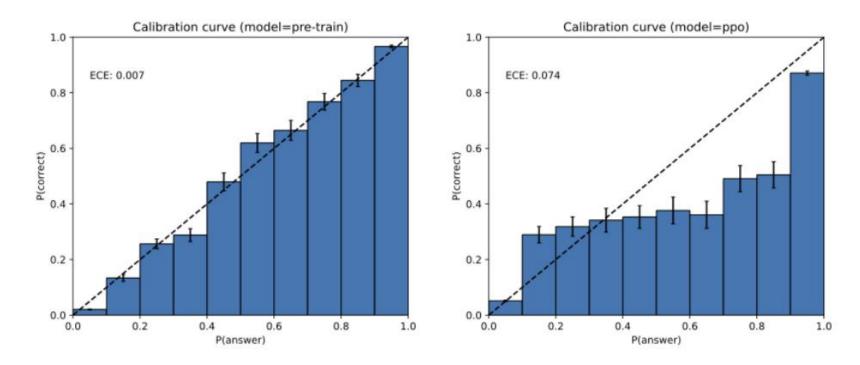
Corollary 1:

$$\operatorname{err} \geq 2 \cdot \operatorname{err}_{iiv} - \frac{|\mathcal{V}|}{|\mathcal{E}|} - \delta,$$

$$\delta := |\hat{p}(\mathcal{A}) - p(\mathcal{A})| \text{ for } \mathcal{A} := \{x \in \mathcal{X} \mid \hat{p}(x) > 1/|\mathcal{E}|\}$$

$$\mathrm{err_{iiv}} \lesssim 1/2$$

$$\operatorname{err} \geq 2 \cdot \operatorname{err}_{iiv} - \frac{|\mathcal{V}|}{|\mathcal{E}|} - \delta$$



GPT-4 calibration histograms before (left) and after (right) reinforcement learning

FOCUS: Generating valid outputs is harder than classifying output validity.

Without prompts, a base model \hat{p} is a probability distribution over a set $X(X = E \cup V)$.

The error rate:
$$\operatorname{err} := \hat{p}(\mathcal{E}) = \sum_{(c,r) \in \mathcal{E}} \mu(c) \hat{p}(r \mid c)$$

IIV:

$$\operatorname{err} \geq 2 \cdot \operatorname{err}_{\operatorname{iiv}} - \frac{\max_{c} |\mathcal{V}_{c}|}{\min_{c} |\mathcal{E}_{c}|} - \delta,$$

where $\delta := |\hat{p}(\mathcal{A}) - p(\mathcal{A})|$ for $\mathcal{A} := \{(c, r) \in \mathcal{X} \mid \hat{p}(r \mid c) > 1/\min_c |\mathcal{E}_c|\}$.

02 Pretrain - Arbitrary-fact hallucinations

Definition 1 (Arbitrary Facts). The following are fixed: an arbitrary prompt distribution $\mu(c)$, an IDK response and, for each prompt c: a response set \mathcal{R}_c and a probability of answering $\alpha_c \in [0, 1]$. Independently for each c, a single correct answer $a_c \in \mathcal{R}_c$ is chosen uniformly at random. Finally, $p(a_c \mid c) = \alpha_c$ and $p(\text{IDK} \mid c) = 1 - \alpha_c$ for each $c \in \mathcal{C}$. Thus $\mathcal{E}_c = \mathcal{R}_c \setminus \{a_c\}$ and $\mathcal{V}_c = \{a_c, \text{IDK}\}$.

Definition 2 (Singleton rate). A prompt $c \in \mathcal{C}$ is a singleton if it appears exactly once in the N training data $\langle (c^{(i)}, r^{(i)}) \rangle_{i=1}^{N}$ without abstention, i.e., $|\{i : c^{(i)} = c \land r^{(i)} \neq \mathrm{IDK}\}| = 1$. Let $\mathcal{S} \subseteq \mathcal{C}$ denote the set of singletons and

$$\operatorname{sr} = \frac{|\mathcal{S}|}{N}$$

denote the fraction of training singletons.

$$1 \leftarrow \operatorname{err} \geq 2 \cdot \operatorname{err}_{iiv} - \frac{\max_{c} |\mathcal{V}_{c}|}{\min_{c} |\mathcal{E}_{c}|} - \delta,$$

where $\delta := |\hat{p}(\mathcal{A}) - p(\mathcal{A})|$ for $\mathcal{A} := \{(c, r) \in \mathcal{X} \mid \hat{p}(r \mid c) > 1/\min_c |\mathcal{E}_c|\}$.

Alan Turing's estimate of the unseen-event probability is the fraction of samples appearing exactly once.

02 Pretrain - Pool Models

Misclassifications can also arise when the underlying model is poor because:

- The model family cannot represent the concept well.
- The model family is sufficiently expressive but the model itself is not a good fit.

02 Pretrain - Pool Models

The minimal error rate of any classifier in a given family G of classifiers g:

$$\operatorname{opt}(\mathcal{G}) := \min_{g \in \mathcal{G}} \Pr_{x \sim D}[g(x) \neq f(x)] \in [0, 1]$$

$$\mathcal{G} := \{ g_{\theta,t} \mid \theta \in \Theta, t \in [0,1] \}, \text{ where } g_{\theta,t}(c,r) := \begin{cases} + & \text{if } \hat{p}_{\theta}(r \mid c) > t, \\ - & \text{if } \hat{p}_{\theta}(r \mid c) \leq t. \end{cases}$$

$$\operatorname{err} \geq 2 \cdot \operatorname{opt}(\mathcal{G}) - \frac{\max_{c} |\mathcal{V}_{c}|}{\min_{c} |\mathcal{E}_{c}|} - \delta.$$

02 Pretrain - Pool Models - Example

N-grams model:

Theorem 3 (Pure multiple-choice). Suppose $|\mathcal{V}_c| = 1$ for all $c \in \mathcal{C}$ and let $C = \min_c |\mathcal{E}_c| + 1$ be the number of choices. Then,

$$\operatorname{err} \geq 2\left(1 - \frac{1}{C}\right) \cdot \operatorname{opt}(\mathcal{G})$$

e.g.:

 $c_1 =$ She lost it and was completely out of... $c_2 =$ He lost it and was completely out of... $r_1 =$ her mind. $r_2 =$ his mind.

$$err >= 2*(1-1/2)*(1/2)=0.5$$

02 Pretrain - Pool Models - Example

DeepSeek-V3 vs DeepSeek-R1:

How many Ds are in DEEPSEEK? If you know, just say the number with no commentary.

DeepSeek-V3	"2" or "3"
DeepSeek-R1	Let me spell it out: D-E-E-P-S-E-E-K. First letter: D — that's one D. Second letter: E — not D. Third letter: E — not D So, the number of Ds is 1.

02 Pretrain - Additional Factors

Computational Hardness: "What is the decryption of c?"

Distribution shift: OOD.

GIGO: Garbage in, Garbage out.

03 Post-training

How evaluations reinforce hallucination

Benchmark	Scoring method	Binary grading	IDK credit
GPQA	Multiple-choice accuracy	Yes	None
MMLU-Pro	Multiple-choice accuracy	Yes	None
IFEval	Programmatic instruction verification	Yes^a	None
Omni-MATH	Equivalence grading*	Yes	None
WildBench	LM-graded rubric*	No	$Partial^b$
BBH	Multiple-choice / exact-match	Yes	None
MATH (L5 split)	Equivalence grading*	Yes	None
MuSR	Multiple-choice accuracy	Yes	None
SWE-bench	Patch passes unit tests	Yes	None
HLE	Multiple-choice / equivalence grading*	Yes	None

03 Post-training

Answer only if you are > t confident, since mistakes are penalized t/(1-t) points, while correct answers receive 1 point, and an answer of "I don't know" receives 0 points.

- Propose making the confidence threshold explicit in the instructions.
- Suggest incorporating confidence targets into existing mainstream evaluations.

03 Post-training

Behavioral calibration: rather than requiring the model to output a probabilistic confidence.