
Parametric Retrieval Augmented Generation

2025.3.26

唐明昊

Motivation

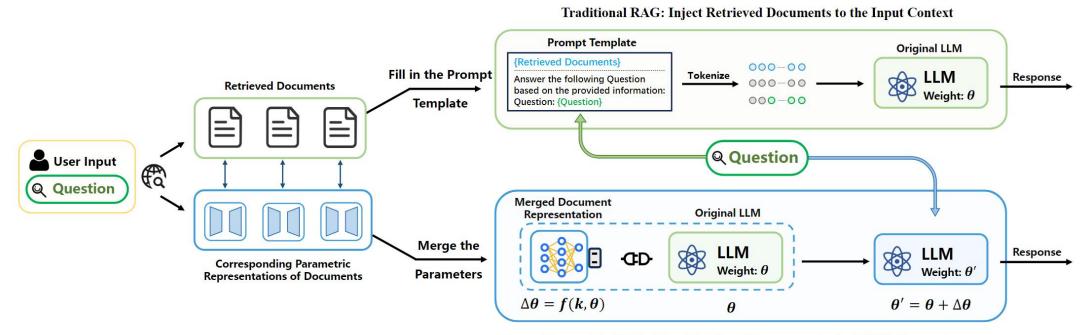
All RAG methods, regardless of their variations, share a common characteristic: they inject external knowledge by directly adding passages or documents into the input context of LLMs, which we refer to as the **in-context knowledge injection**

Motivation

- Long context not only introduces extra computational overhead and latency for LLM inference, but also hurts the performance of LLMs in understanding and utilizing external knowledge
- Adding passages in the input context could only affect the online computation of key-value pairs in the attention networks of LLMs, but not the model's stored parameters, where its knowledge is encoded

Motivation

LLMs may never be able to utilize external knowledge as effectively as they use their internal knowledge in in-context RAG methods

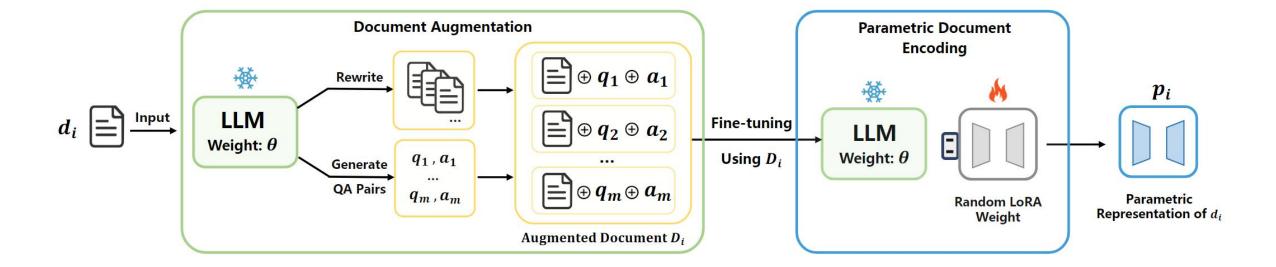

SFT-based methods?

require substantial resources, may affect original ability, lack of flexibility

Is it possible to inject external knowledge into LLM parameters effectively, efficiently, and flexibly for retrieval-augmented generation?

Overview

- offline document parameterization
 converts each document into its corresponding parametric representation
- online inference with a Retrieve-Update-Generate workflow
 merges the parametric representations and then plugs the merged parameters into the LLM

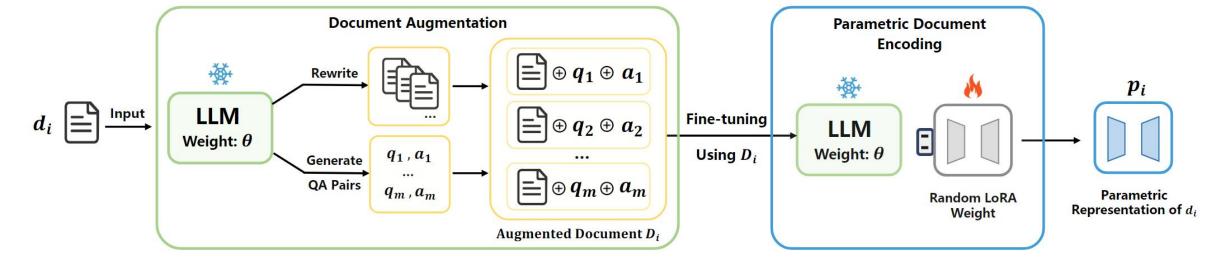

Parametric RAG: Inject Retrieved Documents to the LLM's Parameter

Offline Document Parameterization

Document Augmentation

- Document Rewriting
- QA Pair Generation

$$D_i = \{ (d_i^k, q_i^j, a_i^j) \mid 1 \le k \le n, \ 1 \le j \le m \}$$



Offline Document Parameterization

Parametric Document Encoding

- initialize parametric representations as low-rank matrices corresponding to FFN,
 following the LoRA approach
- each document is associated with independently trained low-rank parameters

$$W' = W + \Delta W = W + A B^{\top} \qquad \min_{\Delta \theta} \sum_{(d_i^k, q_i^j, a_i^j) \in D_i} \sum_{t=1}^{I} -\log P_{\theta + \Delta \theta}(x_t | x_{< t})$$

Online Inference

- Retrieve
 - select the top-k documents with the highest relevance scores
- Update

merge the low-rank matrices from the top-k retrieved documents to form a single plug-in module for the LLM, and then update the original feed-forward weight

$$\Delta W_{\text{merge}} = \alpha \cdot \sum_{j=1}^{k} A_j B_j^{\top}$$

- Generate
 - directly generate the final response to the query

Experimental Results

Table 1: The overall experiment results of Parametric RAG and other baselines across four tasks. All metrics reported are F1 scores. Bold numbers indicate the best performance of all baselines, and the second-best results are underlined. "*" and \dagger denote significantly worse performance than the bolded method and our proposed P-RAG with p < 0.05 level, respectively.

		2WikiMultihopQA				HotpotQA			PopQA	CWQ	
		Compare	Bridge	Inf.	Compose	Total	Bridge	Compare	Total		
LLaMA-1B	Standard RAG	0.4298 [†] *	0.3032 ^{†*}	0.2263	0.1064	0.2520*	0.2110	0.4083	0.2671	0.1839*	0.3726
	DA-RAG	$0.3594^{\dagger *}$	$0.2587^{\dagger *}$	0.2266	$0.0869^{\dagger*}$	0.2531*	0.1716*	0.3713 [†] *	0.2221	0.2012*	0.3691
	FLARE	$0.4013^{\dagger *}$	0.2589 [†] *	0.1960	$0.0823^{\dagger *}$	0.2234*	0.1630*	$0.3784^{\dagger *}$	0.1785*	$0.1301^{\dagger *}$	0.3173*
	DRAGIN	0.4556	0.3357*	0.1919	0.0901	0.2692*	0.1431*	0.4015	0.1830*	$0.1056^{\dagger *}$	0.3900
	P-RAG (Ours)	0.4920	0.3994	0.2185	0.1334	0.2764	0.1602*	0.4493	0.1999*	0.2205*	0.3482*
	Combine Both	0.5046	0.4595	0.2399	0.1357	0.3237	0.2282	0.4217	0.2689	0.2961	0.4101
Qwen-1.5B	Standard RAG	0.3875 [†] *	$0.3884^{\dagger *}$	$0.1187^{\dagger *}$	$0.0568^{\dagger *}$	$0.2431^{\dagger *}$	0.1619*	0.3713 [†] *	0.2073*	0.0999†*	0.2823*
	DA-RAG	$0.3418^{\dagger *}$	0.4015	$0.1269^{\dagger *}$	$0.0514^{\dagger *}$	$0.2156^{\dagger *}$	$0.1182^{\dagger *}$	$0.3041^{\dagger *}$	0.1683*	$0.1197^{\dagger *}$	$0.2718^{\dagger *}$
	FLARE	0.1896 [†] *	0.1282 ^{†*}	$0.0852^{\dagger *}$	$0.0437^{\dagger *}$	$0.1004^{\dagger *}$	$0.0750^{\dagger *}$	$0.1229^{\dagger *}$	$0.0698^{\dagger *}$	$0.0641^{\dagger *}$	$0.1647^{\dagger *}$
	DRAGIN	$0.2771^{\dagger *}$	$0.1826^{\dagger *}$	$0.1025^{\dagger *}$	$0.0680^{\dagger *}$	$0.1538^{\dagger *}$	$0.0801^{\dagger *}$	$0.1851^{\dagger *}$	$0.0973^{\dagger *}$	$0.0548^{\dagger *}$	$0.1788^{\dagger *}$
	P-RAG (Ours)	0.4529	0.4494	0.2072	0.1372	0.3025	0.1720	0.4623	0.2165*	0.1885	0.3280
	Combine Both	0.4053	0.4420	<u>0.1705</u>	<u>0.1154</u>	0.2627	0.2383	0.5037	0.2942	0.2261	0.3495
	Standard RAG	0.5843 [†] *	0.4794**	0.1833 [†] *	0.0991 [†] *	0.3372 ^{†*}	0.1823 [†] *	0.3493 [†] *	$0.2277^{\dagger *}$	0.1613 [†] *	0.3545 [†] *
LLaMA-8B	DA-RAG	$0.4921^{\dagger *}$	$0.3344^{\dagger *}$	$0.1523^{\dagger *}$	$0.0670^{\dagger *}$	$0.2396^{\dagger *}$	$0.1587^{\dagger *}$	$0.2860^{\dagger *}$	$0.1996^{\dagger *}$	0.2255*	$0.3481^{\dagger *}$
	FLARE	$0.4293^{\dagger *}$	$0.3769^{\dagger *}$	0.3086	0.1627*	0.3492*	$0.2493^{\dagger *}$	$0.4324^{\dagger *}$	$0.2771^{\dagger *}$	0.2393*	$0.3084^{\dagger *}$
	DRAGIN	0.5185 [†] *	$0.4480^{\dagger *}$	0.2664	0.1833	0.3544*	0.2618*	0.6116*	0.2924*	$0.1772^{\dagger *}$	$0.3101^{\dagger *}$
	P-RAG (Ours)	0.6353	0.5437	0.2471*	0.1992	0.3932	0.3115*	0.6557	0.3563*	0.2413*	0.4541
	Combine Both	0.6432	0.5556	0.3160	0.2339	0.4258	0.4025	0.6918	0.4559	0.3059	0.4728

Experimental Results

LoRA initialization: random or pretrained using sampled QA pairs

Table 2: Ablation study on the impact of LoRA weight initialization strategies for P-RAG. All metrics reported are F1 scores. "P-RAG Rand." and "P-RAG Warm." indicate randomly initialized LoRA weights and warm-up LoRA initialization, respectively. The best results are in bold.

		2WQA	HQA	PQA	CWQ
LLaMA-1B	P-RAG Rand.	0.2764	0.1999	0.2205	0.3482
	P-RAG Warm.	0.3546	0.2456	0.2035	0.4263
Qwen-1.5B	P-RAG Rand.	0.3025	0.2165	0.1885	0.3280
	P-RAG Warm.	0.3542	0.2718	0.2418	0.5018
LLaMA-8B	P-RAG Rand.	0.3932	0.3563	0.2413	0.4541
	P-RAG Warm.	0.4201	0.4499	0.2952	0.5591

Experimental Results

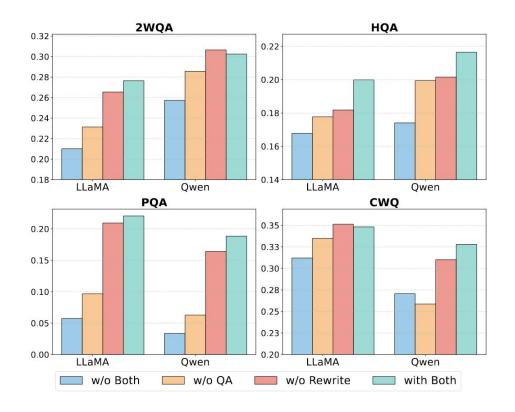


Figure 3: Ablation study on the impact of the document augmentation stage. LLaMA indicates LLaMA-3.2-1B, and Qwen indicates Qwen-2.5-1.5B. The metric used is the F1 Score.

Table 3: Ablation study comparing different document augmentation models. GenLM indicates the generator LLM and AugLM indicates the LLM for document augmentation. LLaMA indicates LLaMA-3.2-1B, and Qwen indicates Qwen-2.5-1.5B. The best results are in bold. The metric used in the table is F1 Score.

GenLM	AugLM	Dataset					
Centeri	rughiri	2WQA	HQA	PQA	CWQ		
0	LLaMA-1B	0.2764	0.1999	0.2205	0.3482		
LLaMA-1B	Qwen-1.5B	0.2753	0.1980	0.2340	0.3495		
	LLaMA-8B	0.2748	0.1935	0.2207	0.3498		
	LLaMA-1B	0.2974	0.2005	0.1829	0.3183		
Qwen-1.5B	Qwen-1.5B	0.3025	0.2165	0.1885	0.3280		
	LLaMA-8B	0.2948	0.2161	0.2156	0.3211		

Efficiency

- Parametric RAG is more cost-friendly than in-context RAG when the number of queries is more than twice that of documents in the life cycle of the service
- The access of information in real user traffic follows a longtail distribution, creating parametric representations for a tiny set of head documents can serve the majority of user requests

Table 4: The average time required by the LLaMA3-8B model to answer a question on the 2WikiMultihopQA (2WQA) and ComplexWebQuestions (CWQ) datasets. The "+0.32" footnote for P-RAG and Combine Both indicates the total time needed for merging and loading the LoRA adapter.

	2V	VQA	CWQ		
	Time(s)	Speed Up	Time(s)	Speed Up	
P-RAG	$2.34_{\pm 0.32}$	1.29x	$2.07_{\pm 0.32}$	1.36x	
Combine Both	$3.08_{\pm 0.32}$	0.98x	$2.84_{\pm 0.32}$	0.99x	
Standard RAG	3.03	1.00x	2.82	1.00x	
FLARE	10.14	0.25x	11.31	0.25x	
DRAGIN	14.60	0.21x	16.21	0.17x	